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INTRODUCTION TO BINARY LOGISTIC REGRESSION 

 

Binary logistic regression is a type of regression analysis that is used to estimate the relationship 

between a dichotomous dependent variable and dichotomous-, interval-, and ratio-level 

independent variables.   

 

Many different variables of interest are dichotomous – e.g., whether or not someone voted in the 

last election, whether or not someone is a smoker, whether or not one has a child, whether or not 

one is unemployed, etc.   

 

These types of variables are often referred to as discrete or qualitative.  Many discrete or 

qualitative variables can be thought of as events.   

 

Dichotomous or dummy variables are usually coded 1, indicating “success” or “yes,” and 0, 

indicating “failure” or “no.”  The mean of a dichotomous variable coded 1 and 0 is equal to the 

proportion of cases coded as 1, which can also be interpreted as a probability.   

 

1 1 1 1 1 1 0 0 0 0  

mean = 6 / 10 = .6 = the probability that any 1 case out of 10 has a score of 1 

 

For quite a while, researchers used OLS regression to analyze dichotomous outcomes.  This was 

based on the idea that predicted values (ŷ) – based on the regression results – generally range 

from 0 to 1 and are equivalent to predicted probabilities, predicted proportions, and predicted 

percents of “success” given values on the independent variables.   

 

In other words, if we regressed a dummy variable, voted or not, on education and got the 

estimate b = .025, then we could say that a one-unit increase in education increases the 

probability of voting by .025.  Equivalently, a one-unit increase in education increases the 

proportion voting by .025.  Finally, a one-unit increase in education increases the percent voting 

by 2.5 percent.   

 

Due to a number of conceptual and statistical problems, however, people no longer use OLS 

regression to analyze dichotomous dependent variables.  There are a number of alternative 

approaches to modeling dichotomous outcomes including logistic regression, probit analysis, and 

discriminant function analysis.   

 

Logistic regression is by far the most common, so that will be our main focus.  Additionally, we 

will focus on binary logistic regression as opposed to multinomial logistic regression – used for 

nominal variables with more than 2 categories.   
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OLS Regression with a Dichotomous Dependent Variable 

What is wrong with using OLS regression with dichotomous dependent variables?  There are a 

number of problems. 

 

1.  One of the regression assumptions that we discussed is that the dependent variable is 

quantitative (at least at the interval level), continuous (can take on any numerical value), and 

unbounded.   

 

A person’s score on the dependent variable is assumed to be a function of their score on each 

independent variable.  Therefore, the dependent variable must be free to take on any value that is 

predicted by the combination of independent variables.  If the dependent variable does not meet 

these requirements (e.g., it is dichotomous), then predicted scores on the dependent variable may 

lie outside possible limits.  When you use OLS regression with a dichotomous dependent 

variable, predicted probabilities (based on the estimated OLS regression equation) are not 

bounded by the values of 0 and 1.   

 

Why is this a problem?  In the real world, probabilities can never be less than 0 and can never be 

greater than 1.  With dummy dependent variables and OLS regression, it is not uncommon for 

predicted probabilities to be less than 0 and greater than 1.  The likelihood of this increases as the 

difference between the number of successes and failures increases.  In other words, if the split is 

90% have a score of 1 and 10% have a score of 0, then you will probably experience impossible 

predicted probabilities.   

 

2.  Another OLS multiple regression assumption is that the relationship between Y and X is 

linear and additive in the population.  Our estimates cannot be very good if we assume that the 

true relationship is linear and additive and we specify a linear and additive relationship when, in 

fact, in the population, the relationship is non-linear and/or non-additive 

 

In many cases, it is not unreasonable to assume that the relationship between two variables is 

non-linear.  The example that Pampel uses in the book is that of income and home ownership.  A 

$10,000 increase in income probably increases the probability of owning a home more for 

someone with an initial income of $40,000 than someone with an initial income of $0.  Also an 

additional $10,000 probably does not have much of an influence on the likelihood that a very 

rich person owns a home – e.g., earning $1,001,000 versus earning $1,000,000.  So a more 

appropriate functional form (rather than a line) might be an s-shaped curve: 
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This type of a curve suggests that one-unit changes in the independent variable have different 

effects on the dependent variable at different levels of the independent variable.  It takes a much 

larger increase in X to have the same effect on Y at extreme ends of the curve.  One way to think 

about this is to consider the fact that the slope of this curve changes at different values of Y.  In 

essence, there are a number of different perpendicular lines that one can draw. 

 

3.  Another regression assumption is that the error term is normally distributed.  Remember that 

the error term summarizes all of the causes of the dependent variable not included in the model 

as well as errors in the functional form of the equation, measurement error, and the randomness 

in human behavior.   

 

The assumption of normality allows you to do hypothesis testing.  If the error term is not 

normally distributed, then we cannot use z (t) to find the probability under the curve. 

 

The error term is not normally distributed when you use OLS regression with a dichotomous 

dependent variable because, for any value of X, there are only two possible values that the 

residuals can take.  A residual is defined as the observed value on the dependent variable minus 

the predicted value given X.   

 

Here’s an example: 

Consider 10 people with a value of 2 on the independent variable and an estimated regression 

equation of:  

ŷi = .03 + .48 * xi 

 

The residual is equal to yi – ŷi, where ŷi = a + (b * xi).   

So after substituting, the residual is equal to yi – (a + (b * xi)). 

 

For the value X = 2, there are only 2 possible values for the residual because there are only two 

possible observed values for Y (1 and 0).   

1 – (.03 + .48 * 2) = .01 

0 – (.03 + .48 * 2) = -.99 

 

Thus, for any value of x, there are only two possible residuals so the distribution is not normal.   

 

4.  Another assumption is that of homoskedasticity – that the variance of the error term is 

constant across all values of the independent variables.  Homoskedasticity means that the 

predicted values of the dependent variable are as good (or as bad) at all levels of the independent 

variable.   

 

This is violated because the residuals vary with the value of x.  The linear OLS regression 

consistently underestimates the slope at moderate levels of x and consistently overestimates the 

slope at extreme levels of x. 

 

Heteroskedasticity leads to biased estimates of the standard errors, which we use in our t tests.  

Poor estimates increase the chance of drawing incorrect conclusions in hypothesis testing.  
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The Logit Transformation 

So what can we do?  As I mentioned earlier, many topics of interest are dichotomous.  Logistic 

regression uses the logit transformation to linearize the non-linear relationship between X and 

the probability of Y.  It does this through the use of odds and logarithms.  So, the logit is a 

nonlinear function that represents the s-shaped curve.  Let’s look more closely at how this works. 

[‘Generalized linear models’ refers to a class of models that uses a link function to make 

estimation possible.  The logit link function is used for binary logistic regression.  Other link 

functions are used for other types of variables].    

 

Probabilities express the likelihood of an event as a proportion of both occurrences and non-

occurrences.  In other words, probabilities are defined as the number of occurrences divided by 

the number of occurrences plus the number of non-occurrences.  So, if you have a sample of 

4,000 people and 3000 are married, the probability of being married is .75 (there is a 75% change 

of being married): 3000 / (3000 + 1000) = .75.  Probabilities cannot be less than 0 and cannot be 

greater than 1.  In other words, they are bounded by 0 and 1. 

 

Odds, by contrast, are defined as the likelihood of occurrence divided by the likelihood of non-

occurrence.  Thus, the odds of being married for our example is: 3000 / 1000 = 3.  What 

difference does dividing only by the number of non-occurrences make?  It removes the upper 

limit of 1.  But wait…that’s not all…odds are also non-linear.  Consider the examples in the 

Pampel text (p. 11):  

 

The same change (a .1 increase in P) leads to increasingly large increases in the odds.  Notice 

that the odds ratio is still bounded at the lower end.  It is impossible for the odds to fall below 0.  

So, transforming the probabilities into odds has removed the upper limit.   

 

P .1 .2 .3 .4 .5 .6 .7 .8 .9 

1-P .9 .8 .7 .6 .5 .4 .3 .2 .1 

Odds .111 .250 .429 .667 1 1.500 2.333 4 9 

Ln odds -2.198 -1.386 -.846 -.405 0 .405 .847 1.386 2.197 

 

The next step is to take the natural logarithm of the odds.  Taking the natural log of the odds 

eliminates the floor of zero.  Taking the natural log of a number above 0 and below 1 yields a 

negative number.  Odds cannot be less than zero, but all odds less than 1 yield natural logs that 

are negative…the floor is gone.  Taking the natural log of the number 1 yields 0.  Finally, taking 

the natural logarithm of a number greater than 1 yields a positive number.  However, notice that 

the distribution of logged odds is symmetrical around 0.  The same size increase or decrease in 

the probabilities has the same absolute value in logged odds.   

 

It is important to point out that the difference between the logged odds is not constant.  For 

example, 2.197-1.386=.811 while 1.386-.847=.539.  What does this mean?  The logit 

transformation is stretching the distribution at extreme ends so the same one-unit change in X 

(the independent variable) leads to increasingly smaller gains in Y.  In essence, it yields the s-

shaped curve. 
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The linear relationship between X and the log odds is given by the following formula – 

cumulative logistic distribution function (you will see this in some statistical output): 

 

Logged odds: 22110
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Notice that there is no error term in the model.  The error term is not necessary.  “The random 

component of the model is inherent in the modeling itself – the logit equation, for example, 

provides the expression for the probability that an event will occur.  For each observation the 

occurrence or non-occurrence of that event comes about through a chance mechanism 

determined by this probability, rather than by a draw from a bowl of error terms” (Kennedy 

1998, p. 234).    

 

The right hand side of the equation looks like a normal linear regression equation, but the left 

hand side is the log odds rather than a probability.  This equation can be re-written as follows: 
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Estimation 

Fantastic…logistic regression allows us to estimate the relationship between dichotomous 

dependent variables and dichotomous, interval, and ratio independent variables.  But…how does 

it work?  Where do the estimates for  come from? 

 

Logistic regression uses maximum likelihood estimation to generate estimates of .  Specifically, 

ML uses the observed data and probability theory to find the most likely or the most probable 

population value given the sample data (observations).   

 

In logistic regression, the formula that is used to determine the population value most likely to 

yield the sample data is given by the likelihood function: 

 

 
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The likelihood function is an expression for the likelihood of observing the pattern of 

occurrences (y=1) and non-occurrences (y=0) of an event in a given sample.  In other words, it 

tells us the probability of getting our sample data from a population with probabilities equal to 

Pi.   

 

The yis above can be either 1 or 0, depending on the score of person i on the dependent variable.  

The Pis refer to predicted probabilities on the dependent variable (there is one for every person in 

the sample) given the person’s scores on the independent variable(s).  You plug predicted 

probabilities into this equation just like we plugged possible population proportions into the 
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binomial probability distribution.  The predicted probabilities are from a logistic regression 

model.   

 

 yi Pi  iy
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 1 0.1 0.100000  1 0.8 0.800000 

 1 0.2 0.200000  1 0.9 0.900000 

 0 0.8 0.200000  0 0.1 0.900000 

 0 0.9 0.100000  0 0.2 0.800000 

LF   0.000400    0.518400 

 

How does the software package do a logistic regression to get the predicted probabilities?  It 

does this by using OLS regression to get a first set of estimates.  These estimates yield predicted 

probabilities for each case, which are plugged into the likelihood function and generate a score 

for those estimates.  The score is equal to the likelihood of obtaining the observed sample data 

(the combination of 1s and 0s) from a population with that particular set of slope estimates. 

 

Next, based on sophisticated computer algorithms, it chooses a new estimate for , which is used 

to generate a new set of predicted probabilities for each case.  These are plugged into the 

likelihood function and generate a new score (a new probability) for this new estimate.  This 

process is repeated over and over until the likelihood function is maximized – until increases in 

the number become extremely small with successive attempts.  Believe me, you don’t want to do 

this by hand.   

 

In the book, Pampel talks about the log likelihood function.  The log likelihood function is 

another version of the likelihood function – it is simply the log of the likelihood function.  Why 

does the computer program use this instead of the likelihood function?  Because it’s easier to do 

addition than multiplication.  By taking the log of the likelihood function, the different 

components of the equation can be added together instead of multiplied together.  One rule of 

logarithms states that log (a*b) = log a + log b. 

 

Summary 

So to summarize, when we are interested in examining the relationship between a dichotomous 

dependent variable and dichotomous, interval, and ratio independent variables, we can use 

logistic regression.  Logistic regression uses maximum likelihood to generate the estimates of the 

slopes.  Logistic regression yields unbiased and efficient estimates of  and OLS regression does 

not.   
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BINARY LOGISTIC REGRESSION IN MULTILEVEL MODELING 

 

The class of models for nominal, ordinal, and count dependent variables is known as generalized 

linear models.  All use a link function to constrain estimates to fall within what is possible for 

that type of variable.  The logit link function is used in binary logistic regression.  This class of 

models can be estimated within a multilevel framework.   

 

The level 1 model is: 

 

pijpjijjijjjij XXXn   ...22110 , 

 

where ijn is the logged odds: 
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Notice that there is not an error term in the level 1 model.  These models are already probabilistic 

so it would be redundant to include an error term at this level.   

 

The level 2 model is (this could be the intercept or a slope): 
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It is possible to estimate all of the same multilevel sub-models within multilevel binary logistic 

regression.    

 

Example 

Data are from the 2003 ISSP National Identity Module.   

 

V49 Help minorities to preserve traditions: Some people say that it is better for a country if 

different racial and ethnic groups maintain their distinct customs and traditions. Others say that it 

is better if these groups adapt and blend into the larger society. Which of these views comes 

closer to your own? 

0. It is better for society if groups maintain their distinct customs and traditions. 

1. It is better if groups adapt and blend into the larger society. 

 

   Freq. Percent Valid Cum. 

Valid Maintain traditions 0 8515 39.08 47.46 47.46 

 Adapt in society 1 9425 43.25 52.54 100 

  Total 17940 82.33 100            

Missing  . 3850 17.67             

Total   21790 100             
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cntryid mean N 

d 0.443 1411 

gb 0.804 828 

a 0.572 835 

h 0.387 905 

i 0.627 969 

irl 0.598 890 

nl 0.706 1696 

n 0.751 1240 

s 0.806 1064 

cz 0.503 899 

slo 0.456 825 

pl 0.466 986 

bg 0.451 941 

rus 0.184 1282 

e 0.479 1077 

lv 0.290 863 

sk 0.380 1229 

Total 0.525 17940 

 

malem - female=0 male=1 

agem is age measured in years 

educm2 is education measured in years 

EGP=Erikson, Goldthorpe, and Portocarero Nominal Class Categories 

EGP123 (reference category) - higher and lower service and routine clerical and sales 

EGP45 - independent and small employers   

EGP711 - manual foremen skilled manual, semi-unskilled manual, farm workers, farmers, farm 

managers 

EGP21 - students 

EGP22 - unemployed 

EGP2325 - homemakers, retirees, and others not in the labor force 

WEUROPE – a dummy variable indicating the country is in Western Europe 
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The One-Way ANOVA with Random Effects Model 

 
melogit adapt || cntryid: , intmethod(mcaghermite) intpoints(1) 

 

 
 

The melogit command tends to run very slowly.  This is due to the method of estimation that is 

used (adaptive quadrature within maximum likelihood).  One of the sources of slowness is 

having large clusters (e.g., countries).  Adding a bunch of random effects exacerbates the 

problem.  Unfortunately, you often have to increase the number of integration points to get stable 

results.  The higher the number of integration points leads to slower estimation.  Rabe-Hesketh 

and Skrondal (2012) discuss this issue on page 523 and pages 537-541.  They set the number of 

integration points to 30 for their examples.   

 

The integration method in the output above (‘Laplace’) is selected by setting the integration 

points to 1.  This method is less accurate, but faster (see Rabe-Hesketh and Skrondal 2012, p. 

527).  You have to use the mcaghermite integration method to set the integration points to 1.   

 

Notice in the output that there is not a variance component at level 1.  This is because there is not 

a level-one residual in logistic regression (it is probabilistic by nature).   

 

  

LR test vs. logistic regression: chibar2(01) =  2219.95 Prob>=chibar2 = 0.0000

                                                                              

   var(_cons)    .5800898   .2007773                      .2943624    1.143163

cntryid       

                                                                              

       _cons     .1100984   .1855085     0.59   0.553    -.2534915    .4736883

                                                                              

       adapt        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -11301.994                     Prob > chi2        =         .

                                                Wald chi2(0)       =         .

Integration method:     laplace

                                                               max =      1696

                                                               avg =    1055.3

                                                Obs per group: min =       825

Group variable:         cntryid                 Number of groups   =        17

Mixed-effects logistic regression               Number of obs      =     17940
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One-way ANCOVA with Random Effects 
melogit adapt malem agem EDUCM2 EGP45 EGP711 EGP21 EGP22 EGP2325 || 

cntryid: , intmethod(mcaghermite) intpoints(1) 

 

 
 

The coefficients are logit coefficients (i.e., logged odds).   

 

Examples of interpretation: 

 Each one year increase in age increases the logged odds of agreeing that it is better if 

groups adapt and blend into the larger society by .003.   

 The logged odds of agreeing that it is better if groups adapt and blend into the larger 

society are .253 higher for blue-collar workers (EGP711 - manual foremen skilled 

manual, semi-unskilled manual, farm workers, farmers, farm managers) compared to 

white-collar workers (EGP123 - higher and lower service and routine clerical and sales) 

 

 

 

 

 

 

 

  

LR test vs. logistic regression: chibar2(01) =  2247.52 Prob>=chibar2 = 0.0000

                                                                              

   var(_cons)     .618678   .2140414                      .3140351    1.218853

cntryid       

                                                                              

       _cons     .2397844   .2154053     1.11   0.266    -.1824022     .661971

     EGP2325      .243141   .0525976     4.62   0.000     .1400517    .3462303

       EGP22     .0562829   .0729862     0.77   0.441    -.0867674    .1993331

       EGP21     .0146199   .0788345     0.19   0.853    -.1398928    .1691326

      EGP711     .2534655   .0527061     4.81   0.000     .1501634    .3567675

       EGP45     .2113438   .0792005     2.67   0.008     .0561136     .366574

      EDUCM2     -.039286   .0052328    -7.51   0.000     -.049542   -.0290299

        agem     .0030156   .0013479     2.24   0.025     .0003739    .0056574

       malem     .0446208   .0343607     1.30   0.194    -.0227249    .1119665

                                                                              

       adapt        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -10864.311                     Prob > chi2        =    0.0000

                                                Wald chi2(8)       =    208.16

Integration method:     laplace

                                                               max =      1664

                                                               avg =    1024.6

                                                Obs per group: min =       787

Group variable:         cntryid                 Number of groups   =        17

Mixed-effects logistic regression               Number of obs      =     17419
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You can calculate the odds coefficient by raising e to the power of the logged odds coefficient: 
Logite .  For example (malem): 045631.10446208. e  

 

Alternatively, you can use the following command after running the original melogit command 

above (the ‘or’ stands for odds ratio): melogit, or 

 

 
 

Examples of interpretation: 

 Each one year increase in age increases the odds of agreeing that it is better if groups 

adapt and blend into the larger society by .3 percent.   

 Each one year increase in education decreases the odds of agreeing that it is better if 

groups adapt and blend into the larger society by 3.9 percent.   

 The odds of agreeing that it is better if groups adapt and blend into the larger society are 

28.8 percent higher for blue-collar workers (manual foremen skilled manual, semi-

unskilled manual, farm workers, farmers, farm managers) compared to white-collar 

workers (higher and lower service and routine clerical and sales) 

 

 

  

LR test vs. logistic regression: chibar2(01) =  2247.52 Prob>=chibar2 = 0.0000

                                                                              

   var(_cons)     .618678   .2140414                      .3140351    1.218853

cntryid       

                                                                              

       _cons     1.270975   .2737747     1.11   0.266     .8332661     1.93861

     EGP2325     1.275248    .067075     4.62   0.000     1.150333    1.413728

       EGP22     1.057897   .0772118     0.77   0.441     .9168903    1.220589

       EGP21     1.014727   .0799955     0.19   0.853     .8694514    1.184277

      EGP711     1.288483   .0679109     4.81   0.000     1.162024    1.428704

       EGP45     1.235337   .0978394     2.67   0.008     1.057718    1.442783

      EDUCM2     .9614757   .0050312    -7.51   0.000     .9516652    .9713874

        agem      1.00302   .0013519     2.24   0.025     1.000374    1.005673

       malem     1.045631   .0359286     1.30   0.194     .9775313    1.118475

                                                                              

       adapt   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -10864.311                     Prob > chi2        =    0.0000

                                                Wald chi2(8)       =    208.16

Integration method:     laplace

                                                               max =      1664

                                                               avg =    1024.6

                                                Obs per group: min =       787

Group variable:         cntryid                 Number of groups   =        17

Mixed-effects logistic regression               Number of obs      =     17419
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Intercepts as Outcomes 

melogit adapt malem agem EDUCM2 EGP45 EGP711 EGP21 EGP22 EGP2325 

weurope || cntryid: , intmethod(mcaghermite) intpoints(1) 

 

 

melogit, or 

 

LR test vs. logistic regression: chibar2(01) =  1055.17 Prob>=chibar2 = 0.0000

                                                                              

   var(_cons)     .295026   .1029406                      .1488877     .584604

cntryid       

                                                                              

       _cons    -.3659092   .2175315    -1.68   0.093    -.7922631    .0604446

     weurope      1.13972   .2661713     4.28   0.000      .618034    1.661406

     EGP2325     .2427728   .0525932     4.62   0.000      .139692    .3458535

       EGP22     .0564473   .0729826     0.77   0.439     -.086596    .1994905

       EGP21     .0146583   .0788239     0.19   0.852    -.1398337    .1691504

      EGP711      .254381   .0527049     4.83   0.000     .1510813    .3576808

       EGP45     .2106622   .0791975     2.66   0.008      .055438    .3658864

      EDUCM2     -.039165   .0052317    -7.49   0.000     -.049419    -.028911

        agem     .0030315   .0013478     2.25   0.024     .0003899    .0056731

       malem     .0441588   .0343608     1.29   0.199     -.023187    .1115046

                                                                              

       adapt        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -10858.081                     Prob > chi2        =    0.0000

                                                Wald chi2(9)       =    224.90

Integration method:     laplace

                                                               max =      1664

                                                               avg =    1024.6

                                                Obs per group: min =       787

Group variable:         cntryid                 Number of groups   =        17

Mixed-effects logistic regression               Number of obs      =     17419

LR test vs. logistic regression: chibar2(01) =  1055.17 Prob>=chibar2 = 0.0000

                                                                              

   var(_cons)     .295026   .1029406                      .1488877     .584604

cntryid       

                                                                              

       _cons     .6935658   .1508724    -1.68   0.093     .4528189    1.062309

     weurope     3.125894   .8320233     4.28   0.000     1.855277    5.266713

     EGP2325     1.274779   .0670447     4.62   0.000      1.14992    1.413196

       EGP22     1.058071   .0772207     0.77   0.439     .9170475    1.220781

       EGP21     1.014766   .0799879     0.19   0.852     .8695028    1.184298

      EGP711     1.289663   .0679716     4.83   0.000     1.163091    1.430009

       EGP45     1.234495   .0977689     2.66   0.008     1.057003    1.441791

      EDUCM2      .961592   .0050308    -7.49   0.000     .9517822     .971503

        agem     1.003036   .0013519     2.25   0.024      1.00039    1.005689

       malem     1.045148   .0359121     1.29   0.199     .9770797    1.117959

                                                                              

       adapt   Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -10858.081                     Prob > chi2        =    0.0000

                                                Wald chi2(9)       =    224.90

Integration method:     laplace

                                                               max =      1664

                                                               avg =    1024.6

                                                Obs per group: min =       787

Group variable:         cntryid                 Number of groups   =        17

Mixed-effects logistic regression               Number of obs      =     17419
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